行业知识

气相色谱基础知识

2025-09-22 08:48:04 科威

气相色谱基础知识

一、气相色谱法有哪些特点?

答:气相色谱是色谱中的一种,就是用气体做为流动相的色谱法,在分离分析方面,具有如下一些特点:

1.高灵敏度:可检出10-10 克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。

2.高选择性:可有效地分离性质极为相近的各种同分异构体和各种同位素。

3.高效能:可把组分复杂的样品分离成单组分。

4.速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。

5.应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的限制。

6.所需试样量少:一般气体样用几毫升,液体样用几微升或几十微升。

7.设备和操作比较简单仪器价格便宜。

气相色谱法

图片关键词

1.气相色谱法(GC):

是以气体为流动相的色谱分析法。

2.气相色谱要求样品:

气化,不适用于大部分沸点高和热不稳定的化合物,对于腐蚀性能和反应性能较强的物质更难于分析。

大约有15%~20%的有机物能用气相色谱法进行分析。

3.气相色谱仪的组成:

气路系统、进样系统、分离系统、检测系统、温控系统、记录系统。

4.气路系统:

包括气源、净化器和载气流速控制;

常用的载气有:

氢气、氮气、氦气。

5.进样系统:

包括:

进样装置和气化室,气体进样器(六通阀):

试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱;

液体进样器:

不同规格的微量注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。

6.进样方式:

分流进样:

样品在汽化室内气化,蒸气大部分经分流管道放空,只有极小一部分被载气导入色谱柱;

不分流进样:

样品直接注入色谱的汽化室,经过挥发后全部引入色谱柱。

7.分离系统:

色谱柱:

填充柱(2~6mm直径,1~5m长),毛细管柱(0.1~0.5mm直径,几十米长)。

8.温控系统的作用:

温度是色谱分离条件的重要选择参数;

气化室、色谱柱恒温箱、检测器三部分在色谱仪操作时均需控制温度;

气化室:保证液体试样瞬间气化;

检测器:保证被分离后的组分通过时不在此冷凝;

色谱柱恒温箱:准确控制分离需要的温度。

9.检测系统:

作用:将色谱分离后的各组分的量转变成可测量的电信号;

指标:灵敏度、线性范围、响应速度、结构、通用性,通用型——对所有物质均有响应;专属型——对特定物质有高灵敏响应;

检测器类型:

浓度型检测器:

热导检测器、电子捕获检测器;

质量型检测器:

氢火焰离子化检测器、火焰光度检测器。

10.热导检测器的主要特点:

结构简单,稳定性好;

对无机物和有机物都有响应,不破坏样品;

灵敏度不高。

11.氢火焰离子化检测器的特点:

优点:

(1)典型的质量型检测器;

(2)通用型检测器(测含C有机物);

(3)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速、死体积小、线性范围宽等特点;

(4)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1;

缺点:

(1)对载气要求高;

(2)检测时要破坏样品,无法回收样品;

(3)不能检测永久性气体、水及四氯化碳等。。。

12.电子俘获检测器的特点:

对卤素、硫、磷、氮、氧有很强的响应;

灵敏度高,可用于痕量农药残留物的分析;

线性范围较窄。

13.火焰光度检测器(FPD):

是一种对含硫、磷化合物具有高选择性的检测器。含硫、磷化合物在富氢火焰中燃烧被打成有机碎片,发出不同波长的特征光谱。

14.固定相:

固体固定相:固体吸附剂;

1.气相色谱法(GC):

是以气体为流动相的色谱分析法。

2.气相色谱要求样品:

气化,不适用于大部分沸点高和热不稳定的化合物,对于腐蚀性能和反应性能较强的物质更难于分析。

大约有15%~20%的有机物能用气相色谱法进行分析。

3.气相色谱仪的组成:

气路系统、进样系统、分离系统、检测系统、温控系统、记录系统。

4.气路系统:

包括气源、净化器和载气流速控制;

常用的载气有:

氢气、氮气、氦气。

5.进样系统:

包括:

进样装置和气化室,气体进样器(六通阀):

试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱;

液体进样器:

不同规格的微量注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。

6.进样方式:

分流进样:

样品在汽化室内气化,蒸气大部分经分流管道放空,只有极小一部分被载气导入色谱柱;

不分流进样:

样品直接注入色谱的汽化室,经过挥发后全部引入色谱柱。

7.分离系统:

色谱柱:

填充柱(2~6mm直径,1~5m长),毛细管柱(0.1~0.5mm直径,几十米长)。

8.温控系统的作用:

温度是色谱分离条件的重要选择参数;

气化室、色谱柱恒温箱、检测器三部分在色谱仪操作时均需控制温度;

气化室:保证液体试样瞬间气化;

检测器:保证被分离后的组分通过时不在此冷凝;

色谱柱恒温箱:准确控制分离需要的温度。

9.检测系统:

作用:将色谱分离后的各组分的量转变成可测量的电信号;

指标:灵敏度、线性范围、响应速度、结构、通用性,通用型——对所有物质均有响应;专属型——对特定物质有高灵敏响应;

检测器类型:

浓度型检测器:

热导检测器、电子捕获检测器;

质量型检测器:

氢火焰离子化检测器、火焰光度检测器。

10.热导检测器的主要特点:

结构简单,稳定性好;

对无机物和有机物都有响应,不破坏样品;

灵敏度不高。

11.氢火焰离子化检测器的特点:

优点:

(1)典型的质量型检测器;

(2)通用型检测器(测含C有机物);

(3)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速、死体积小、线性范围宽等特点;

(4)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1;

缺点:

(1)对载气要求高;

(2)检测时要破坏样品,无法回收样品;

(3)不能检测永久性气体、水及四氯化碳等。。。

12.电子俘获检测器的特点:

对卤素、硫、磷、氮、氧有很强的响应;

灵敏度高,可用于痕量农药残留物的分析;

线性范围较窄。

13.火焰光度检测器(FPD):

是一种对含硫、磷化合物具有高选择性的检测器。含硫、磷化合物在富氢火焰中燃烧被打成有机碎片,发出不同波长的特征光谱。

14.固定相:

固体固定相:固体吸附剂;

液体固定相:由载体和固定液组成;聚合物固定相。

15.固体固定相:

一般为固体吸附剂,常用的有活性炭,硅胶,氧化铝和分子筛。

优点:

吸附容量大、热稳定性好、价格便宜;

缺点:

柱效低、吸附活性中心易中毒,使用前要进行活化。

应用:

主要用于惰性气体、H2、O2、N2、CO、CO2和CH4等一般气体和低沸点物质。

16.作为载体使用的物质应满足的条件:

表面有微孔结构,孔径均匀,比表面积大;

化学和物理惰性,即,与样品组分不起化学反应,无吸附作用或吸附很弱;

热稳定性好;

有一定的机械强度和浸润性,不易破碎;

具有一定的粒度和规则的形状,最好是球形。

17.对固定液的要求:

在使用温度下是液体,具有较低的挥发性;具有良好的热稳定性;对要分离的各组分应具有合适的分配系数;化学稳定性好,不与样品组分、载气、载体发生任何化学反应。

18.固定液的分类:

非极性固定液、中等极性固定液、强极性固定液、氢键型固定液。

19.非极性固定液:

主要是一些饱和烷烃和甲基硅油,它们与待测物质分子之间的作用力以色散力为主。组分按沸点由低到高顺序流出,若样品中兼有极性和非极性组分,则同沸点的极性组分先出峰。

常用的固定液有角鲨烷(异三十烷)、阿皮松等。。。适用于非极性和弱极性化合物的分析。

20.中等极性固定液:

由较大的烷基和少量的极性基团或可以诱导极化的基团组成,它们与待测物质分子间的作用力以色散力和诱导力为主,组分基本上按沸点顺序出峰,同沸点的非极性组分先出峰。常用的固定液有邻苯二甲酸二壬酯、聚酯等,适用于弱极性和中等极性化合物的分析。

21.强极性固定液:

含有较强的极性基团,它们与待测物质分子间作用力以静电力和诱导力为主,组分按极性由小到大的顺序出峰。常用的固定液有氧二丙腈等,适用于极性化合物的分析。

22.氢键型固定液:

是强极性固定液中特殊的一类,与待测物质分子间作用力以氢键力为主,组分依形成氢键的难易程度出峰,不易形成氢键的组分先出峰。常用的固定液有聚乙二醇、三乙醇胺等,适用于分析含F、N、O等的化合物。

23.固定液的选择:

①按极性相似原则选择:

极性相似,溶解度大,分配系数大,保留时间长;

②按官能团相似选择:

酯类——酯或聚酯类固定液;

醇类——聚乙二醇固定液。

③按主要差别选择:

各组分间沸点是主要差别——非极性固定液;极性为主要差别——极性固定液。

④选择混合固定液:

对于难分离的复杂样品,可选用两种或两种以上固定液。

24.聚合物固定相:

既可作为固体固定相,也可作为载体,又称高分子多孔微球。物质在其表面既存在吸附作用,又存在溶解作用。

(1)具有较大的比表面积,表面孔径均匀;

(2)对非极性及极性物质无有害的吸附活性,拖尾现象小,极性组分也能出对称峰;

(3)由于不存在液膜,无流失现象,热稳定性好;

(4)机械强度和耐腐蚀性较好,系均匀球形,在填充柱色谱中均匀性、重现性好,有助于减少涡流扩散。

25.载气种类的选择:

检测器的适应性,载气流速的大小。

26.柱温的选择:

(1)首先应使柱温控制在固定液的最高使用温度(超过该温度固定液易流失)和最低使用温度(低于此温度固定液以固体形式存在)范围之内。

(2)提高柱温,可以改善传质阻力,有利于提高柱效,缩短分析时间,但降低了容量因子和选择性,不利于分离。一般的原则是:在使最难分离的组分尽可能分离的前提下,尽量采用较低的柱温,但以保留时间适宜,峰形不拖尾为度。

(3)柱温一般选择在接近或略低于组分平均沸点时的温度。

(4)组分复杂,沸程宽的试样,采用程序升温。

27.载体和固定液含量的选择:

配比:

固定液在载体上的涂渍量,一般指的是固定液与担体的百分比,填充柱的配比通常在5%~25%之间。

配比越低,担体上形成的液膜越薄,传质阻力越小,柱效越高,分析速度也越快。配比较低时,固定相的负载量低,允许的进样量较小。分析工作中通常倾向于使用较低的配比。

28.进样条件的选择:

进样量应控制在柱容量允许范围及检测器线性检测范围之内,进样要求动作快、时间短,汽化室一般较柱温高30~70°C。

29.提高色谱分离能力的途径:

(1)塔板理论:

增加柱长,减小柱径,即增加柱子塔板数;

(2)速率理论:

减小组分在柱中的涡流扩散和传质阻力,可降低塔板高度。

30.毛细管色谱柱的结构特点:

(1) 不装填料阻力小,长度可达百米的毛细管柱,管径0.2mm;

(2)气流单途径通过柱子,消除了组分在柱中的涡流扩散;

(3)固定液直接涂在管壁上,总柱内壁面积较大,涂层很薄,则气相和液相传质阻力大大降低。

(4)毛细管色谱柱柱效高达每米3000~4000块理论塔板,一支长度100米的毛细管柱,总的理论塔板数可达104~106。

31.毛细管色谱具有以下优点:

(1)分离效率高:

比填充柱高10~100倍;

(2)分析速度快:

用毛细管色谱分析比用填充柱色谱速度;

(3)色谱峰窄、峰形对称,较多采用程序升温方式;

(4)灵敏度高,一般采用氢焰检测器。

(5)涡流扩散为零。

32.毛细管色谱的类型:

(1)涂壁毛细管柱:

将固定液直接涂敷在管内壁上。柱制作相对简单,但柱制备的重现性差、寿命短。

(2)多孔层毛细管柱:

在管壁上涂敷一层多孔性吸附剂固体微粒,构成毛细管气固色谱。

(3)载体涂渍毛细管柱:

将非常细的担体微粒粘接在管壁上,再涂固定液。柱效较涂壁毛细管柱高。

(4)化学键合或交联毛细管柱:

将固定液通过化学反应键合在管壁上或交联在一起。使柱效和柱寿命进一步提高。

二、气相色谱的分离原理为何?

答:气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。

三、何谓气相色谱?它分几类?

答:凡是以气相作为流动相的色谱技术,通称为气相色谱。一般可按以下几方面分类:

1.按固定相聚集态分类:

①气固色谱:固定相是固体吸附剂,

②气液色谱:固定相是涂在担体表面的液体。

2.按过程物理化学原理分类:

①吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。

②分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。

③其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱;利用温度变化发展而来的热色谱等等。

3.按固定相类型分类:

①柱色谱:固定相装于色谱柱内,填充柱、空心柱、毛细管柱均属此类。

②纸色谱:以滤纸为载体,

③薄膜色谱:固定相为粉末压成的薄漠。

4.按动力学过程原理分类:可分为冲洗法,取代法及迎头法三种。

四、气相色谱法简单分析装置流程是什么?

答:气相色谱法简单分析装置流程基本由四个部份组成:

1.气源部分

2.进样装置

3.色谱柱

4.鉴定器和记录器

首页
产品
新闻
联系